
NPS55-78-036Pr 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

SMOOTHING 3-D DATA FOR TORPEDO PATHS 

by 

J.   B.   Tvsver 

May  19 7 3 

O 
CO o 
o 

o 
eg 

Approved for public release; distribution unlimited. 

Prepared for:  Research and Engineering Department 
Naval Undersea Warfare Engineering Station 
Keyport, Washington  9 3 345. 







UNCLASSIFIED 
.UIJ^ITY CLASSIFICATION OF THIS PAGEfWien Data Entarad) 

20.   Abstract cont. 
The  method of sequential differences was   tried on  the  data and can be 

incorporated in the  smoothing program as  a means of identifying outlier 
data points  and of selecting the  appropriate  polynomial  order  for   fitting 
the  data. 

SECURITY CLASSIFICATION  OF  THIS PAGEfWfcen Data Entarad) 



SMOOTHING 3-D DATA FOR TORPEDO PATHS 

THE GENERAL PROBLEM 

Data 

Data in the form of ordered quadruplets (t., x., v., and z.) are 

available from 3-D files on torpedo and target paths. The times t. are suffic- 

iently accurate so that they can be assumed to be without errors. The spatial co- 

ordinates x., y., and z., however, are not only subject to measurement errors, 

but also may contain erratic measurements or have measurements missing for some 

of the equally spaced time intervals. 

B. Desired Output 

Information to be extracted from this data can be obtained either as: 

(1) smoothed information as a function of time 'parametric form), or 

(2) smoothed information at a particular sequence of times which can be 

specified. 

A comparison of computational requirements of the two procedures will involve the length 

of intervals used in smoothing and the number cf times in the sequence of times of 

interest.  Both procedures involve the same smoothing techniques. 

The information to be extracted from the 3-D data includes: 

(1)   smoothed position coordinates 

(a)   as functions of time (i.e., x=f (t), y=f (t), z=t_(t)) 
A y z 

(b)   at specified times t, (i.e., x(t-), y(tj), z(t-)), 
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(3) velocity component estimates 

(a) as functions of time (i.e., Vv(t), V (t), V_(t)) x y z 

(b) at specified times t. (i.e., V (t.), V (t.), V (t.)), 

(4) relative torpedo and target geometry in vicinity of intercept. 

C. Data Sample 

The path of the torpedo involves maneuvers so that segments must be 

selected for applications of the smoothing technique. The lengths of the segments, and 

hence the number of possible data points, is open to selection. Curves to be used to fit 

the data will primarily be polynomials. Longer path segments will generally require higher 

order polynomials and be more difficult to fit with acceptably small residuals. On the 

other hand, short intervals contain fewer data points and can limit capability for reducing 

prediction errors—the trade-off must be resolved by considering potential paths, and 

measurement errors. Some indication will be presented in subsequent sections of this 

report where data for a specific torpedo path is analyzed. Initially, two sample sizes 

(n=ll and n=21) are considered. 

One of the questionable features for small sample sizes is possible further 

reduction by deletion of data points which appears inconsistent with the remaining data. 

1-2 



H. DATA SMOOTHING 

A. Methodology 

The data smoothing considered in this report is limited to the method of 

least squares. Other methods such as Kalman filtering would be appropriate for real time 

data smoothing where interest is centered on the next data point following the data used 

in the smoothing, but the current status of the method is not appropriate for 

postexperimental application where times within the data sample are of interest. 

The data smoothing techniques currently used at IVPS involve the least: 

squares method with the following equations: 

(1) x(t) = a + bt        (linear) 

(2) x(t) = a + bt  + et        (quadratic, parabolic) 

(3) x(t) = a + bin (t) (logarithmic). 

This report concentrates on the addition of higher order polynomials, in particular: 

(4) x(t) = aQ + axt + a„t+ a3t
3 (cubic) 

(5) x(t) = aQ + a1t + a2t
2 + a3t

3 + a4t
4 (quartic). 

The linear least squares technique is described in Appendix A. The sum of 

squares of the residuals 

N       - n     /        .      \  2 
D=      1    ei

2=       I    fxj-^V) 

provides a basis for selection of the particular equation to be used in fitting a particular 

set of data.  The statistic 

S2 = D/(n-k), 
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where n is the number of points in the sample and k is the number of parameters in the 

equation, provides an estimate of the variance of measurement errors. 

B. Sequential Differences 

A preliminary screening of sample data by successive differences can serve 

a dual purpose: 

(1) indication of the order of the polynomial required to produce a 

reasonable fit, and 

(2) indication of isolated wild data points (outliers^. 

The first through fourth successive differences are presented in Table 1 when the actual 

relationship of x to t is linear and in Table 2 when the relationship is quadratic. A 

perturbation d is introduced in x„. 

There are several salient features of successive differences that should be 

noted: 

(1) Ignore, for the moment, the perturbation in x^. In Table 1, the first 

differences (the A -,:'s) consist of the velocity term a, plus noise. If a., is large with 

respect to the noise (the n-'s), these differences will ail have the same sign. The second 

differences (the A 9i's^ however, involve only noise and their signs should be random. 

This change from consistent signs for the A . .'s to random signs for the A -j's is an 

indication that a linear relationship of x to t is appropriate. 

In passing, it should be noted that: 

Vi| Aii = ai+ <vV/6' 

i- 2 <r2 

/T1 nc nn o 
A   T       = <'18> 1 36 36 
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and that   A i is normally distributed, i.e., 

A, - N(a,, zl  )• 
1 l      18 

It should also be noted that if a-, is not large with respect to <r, the signs 

of the A |j's can still have the sign of a. with the dominance of this sign depending upon 

the relative magnitudes of a, and        <r. 

Next, consider the quadratic case (Table 2). The A 3i's having random 

signs and the A nj's are dominated by the sign of a«, and hence the quadratics are 

indicated as the appropriate polynomial. Note that the signs of the A , .'s may also be 

the same for all i if a^ and a2 have the same sign. If a, and a« have opposite signs and a, 

is greater than a« then there can be a change in the sign of the An:'s where a, + (I - 

(i -1) ) a2 changes sign. In the vicinity of this point the n 's can become significant and 

produce some random sign terms. 

Higher order differences are required to deal with higher order polynomials. 

In general, random signs in (k+1) st order differences and consistent signs in k     order 

differences   indicate  selection  of  a   (k+l)st  order polynomial   to   fit  the  data. 

(2) The perturbation d was included to provide an examination of the effect 

of an isolated outlier on successive differences. For illustrative purposes, it will be 

assumed that a successive difference greater than three times the standard deviation of 

the noise in that difference will be considered as an indication that a perturbation exists. 

The value   «• =4 will also be used for illustrative purposes. 

Now, note the entries in the lower part of Table 1. Unless a-^ is known (or 

estimated) a critical magnitude for the A . j's cannot be specified. For higher order 
differences the i     difference of the j    order ( A ..) has a normal^istribution. 

J1 

Aji-"***'^' 
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•   Where k- is the coefficient of d in   A ,-j.  If d = O then: 

A jl ~   N(0,      «£    ). 
" j 

The situation is an application of statistical hypothesis testing.  If    A ~: is larger than can 

be expected due  to noise alone,  then the presence of a perturbation (an outlier) is 

indicated.    The critical magnitude using assumptions of l.Q-0.99 = 0.01 as significance 

level and     <r =4 is presented in the last row of Table 1. Thus if I A „. I > 17, | A ,. | 

y 18, or   I   A  .. |     >    17, for any i, then an outlier is indicated. 

Note that the value <* =4 was assumed for this illustration. If sequential 

differences are used for preliminary screening before least squares curve fitting is 

performed, the estimate S for <* will not be available. A value of a may be assumed 

from prior information of measurement errors but for purposes of preliminary screening 

some value greater than 4 would permit elimination of data points with large 

perturbations. 

It should be emphasized that the above discussion pertains to the simplest 

situations. For applications where there are missing data points, or where perturbations 

are not isolated, more guidance will be required. The assumption that the noise 

components (the n-'s) are independent and have the same variance, also warrants 

reservations in applications of the models. 

i 
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m. APPLICATION 

A. Sample Data 

A specific test in which a torpedo was launched against a submarine at the 

Naval Undersea Warfare Engineering facilities will be used for illustration. "Hie 3-D data 

includes equally spaced times from 814 to 1000—verv few data points are missing. 

Figure 1 shows the torpedo path with every fifth point. Segments of this torpedo oath are 

selected for application of the methodology presented in Section II. The presentation is 

restricted to the x and y coordinates. 

B. Data Sample I 

The initial 21 points (814-834) appear to lie in a straight line in Figure 1 and 

were selected as the first data sample.  This data is presented in Figure 2 and Table 3. 

(1) Successive differences: 

The first and second order successive differences are also presented in 

Table 3. For the x component, all the first differences are negative and the second 

differences appear random (except possibly for the tail of the sample where a sequence of 

four pluses occur including one value (A 2 17=17.2) which is large enough so that it might 

indicate an outlier). The alternating signs, (-, +, - or +, -, +) are not present so an isolated 

outlier does not appear likely. 

For the y component, all the first order successive differences are positive 

and the second order differences appear somewhat random. Again, A „ .7 = -13.2 

indicates that something has occurred in the vicinity of t.g. Higher order differences 

were not explored for this sample. 

(2) Least squares smoothing: 

Both linear and quadratic functions were fitted using the least squares 

method outlined in Appendix A.  The results are presented below: 
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Table 3.    Successive Differences — Sample I 

h xi Ali A2i 
Y. 

" 1 
Au A2i 

1 5228.6 
-71.8 

-3465.1 
+58.1 

2 5156.8 
-71.7 

+0.1 -3407.0 
+60.8 

+2.7 

3 5085.1 
-68.8 

+2.9 -3346.2 
+61.1 

+0.3 

4 5018.3 
-74.1 

-5.3 -3285.1 
+62.9 

+1.8 

5 4944.2 
-66.1 

+8.0 -3222.2 
+56.6 

-6.3 

5 4878.1 
-78.1 

-12.0 -3165.6 
+59.8 

+3.2 

7 4800.00 
-68.3 

+9.8 -3105.8 
+56.1 

-3.7 

3 4731.7 
-79.5 

-11.2 -3049.7 
+62.5 

+6.4 

9 4652.2 
-68.6 

+9.9 -2987.2 
+56.4 

-6.1 

10 4583.6 
-72.9 

-4.3 -2930.8 
+60.2 

+3.9 

11 4510.7 
-70.5 

+2.4 -2870.5 
+59.7 

-0.6 

12 4440.2 
-73.2 

-2.7 -2810.8 
+60.8 

+1.1 

13 4367.0 
-70.0 

+3.2 -2750.0 
+60.0 

-0.8 

14 4297.0 
-70.9 

-0.9 -2690.0 
+63.3 

+3.3 

15 4226.1 
-72.5 

-1.6 -2626.7 
+55.1 

-8.2 

16 4153.6 
-69.6 

+2.9 -2571.6 
+69.0 

+4.9 

17 4084.0 
-66.3 

^3.3 -2511.6 
+62.5 

+2.5 

13 4017.7 
-49.1 

+17.2 -2449.1 
+44.3 

-18.2 

19 3968.6 
-44.0 

+5.1 -2404.8 
+47.7 

+3.4 

20 3924.6 
-56.3 

-12.6 -2357.1 
+48.0 

+0.3 

21 3868.0 -2309.1 
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Linear 

Quadratic 

x(t) = 5288.3  -69.78t SYO = 16.73 
AC 

y(t) = -3518.1 + 58.72t S     =    8.33 ye 

x(t) = 5318.6  -77.67t + 0.3588t2 S     = 11.62 

y(t) = -3532.0 + 62.33t - 0.1642t2        S„   =   6.30 
ye 

The residual deviations: 

exi = x. - x(tj) 

V = yf - y<V 

are shown in Figure 3. Note that there is a definite trend in these residuals starting about 

time t.g. Note also the general trend of the residuals with a small random pattern 

superimposed on a curve for each residual set. Higher order polynomials could be used to 

remove the general curve (this was not explored). Note, further, that no violent outliers 

are indicated. The fitted linear function is shown in Figure 2 and the observed and 

predicted values for x. and y. are presented in Tables 4a and 4b together with the residuals 

in these components and the deviation 

di 

The sequences of signs observed in Table 4a for the e ,'s and e -'s are of 

interest. There is a sequence of +'s, followed by a sequence of -'s, and ending with a 

sequence of +'s for the exj's. Similarly, there is a sequence of -'s, followed by a sequence 

of +'s, and ending with a sequence of -rs for the e .'s.   (The sign of e g can be ignored or 

changed since the magnitude of e Q is small.) 
y° 
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Linear 

-20 H 

Figure 3.     Least  square  residuals  —sample  I. 
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Table 4a.    Linear Regression - Sample I 

h xi x(tt) e • 
XI 

vi ylt,) eyi 
di 

i 5228.6 5218.5 +10.1 -3465.1 -3459.4 -5.7 11.6 

2 5156.8 5148.8 +8.0 -3407.0 -3400.7 -6.3 10.2 

3 5085.1 5079.0 +6.1 -3346.2 -3342.0 -4.2 7.4 

4 5018.3 5009.2 +9.1 -3285.1 -3283.2 -1.9 9.3 

5 4944.2 4939.4 +4.8 -3222.2 -3224.5 +2.3 5.3 

6 4878.1 4869.7 +8.4 -3165.6 -3165.8 +0.2 8.4 

7 4800.0 4799.9 +0.1 -3105.3 -3107.1 +1.3 1.3 

8 4371.7 4730.1 +1.6 -3049.7 -3048.4 -1.3 2.1 

9 4652.2 4660.3 -8.1 -2987.2 -2989.6 +2.4 8.5 

in 4583.6 4590.6 -7.0 -2930.8 -2930.9 +0.1 7.0 

11 4510.7 4520.8 -10.1 -2870.5 -2872.2 +1.7 10.2 

12 4440.2 4451.0 -10.8 -2810.5 -2813.5 +3.0 11.2 

13 4367.0 4381.2 -14.2 -2750.0 -2754.8 +4.8 15.0 

14 4297.0 4311.4 -14.4 -2690.3 -2696.0 +5.7 15.5 

15 4226.1 4241.7 -15.6 -2626.7 -2637.3 +9.6 13.3 

16 4153.6 4171.9 -18.3 -2571.6 -2578.6 +7.0 19.fi 

17 4084.0 4102.1 -18.1 -2511.6 -2519.9 +8.3 19.9 

13 4017.7 4032.3 -14.6 -2449.1 -2461.2 +12.1 19.0 

19 3968.6 3962.5 +6.1 -2404.8 -2402.4 -2.4 6.6 

20 3924.6 3892.8 +31.8 -2357.1 -2343.7 -13.4 34.5 

21 3868.0 3823.0 +45.0 -2309.1 -2285.0 -24.1 51.1 
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Table 4b.   Quadratic Regression - Sample I 

h xi ^t.) exi *1 yTtp eyi 
di 

i 5228.6 5241.3 -12.7 -3465.1 -3469.8 +4.7 13.5 

2 5156.8 5164.7 -7.9 -3467.0 -3408.0 +1.0 8.0 

3 5085.1 5088.8 -3.7 -3346.2 -3346.4 +0.2 3.7 

4 5018.3 5013.6 +4.7 -3285.1 -3285.3 +0.2 4.7 

5 4944.2 4939.2 +5.0 -3222.2 -3224.4 +2.2 5.5 

6 4878.1 4865.5 +12.6 -3165.6 -3153.9 -1.7 12.7 

7 4800.0 4792.5 +7.5 -3105.8 -3103.7 -2.1 7.8 

3 4731.7 4720.2 +11.5 -3049.7 -3043.8 -5.3 12.9 

9 4652.2 4648.6 +3.6 -2987.2 -2984.3 -2.9 4.6 

10 4583.6 4577.8 +5.8 -2930.8 -2925.1 -5.7 8.1 

11 4510.7 4507.6 +3.1 -3870.5 -2366.2 -4.3 5.3 

12 4440.2 4438.2 +2.0 -2810.8 -2807.6 -3.2 3.8 

13 4367.0 4369.5 -2.5 -2750.0 -2749.4 -0.6 2.6 

14 4297.0 4301.5 -4.5 -2690.0 -2691.5 +1.5 4.7 

15 4226.1 4234.2 -8.1 -2626.7 -2633.9 +7.2 10.8 

16 4153.6 4167.7 -14.1 -2571.6 -2576.7 +5.1 15.0 

17 4084.0 4101.9 -17.9 -2511.6 -2519.7 +8.1 19.7 

18 4017.7 4036.7 -19.0 -2449.1 -2463.2 +14.1 23.7 

19 3968.6 3972.3 -3.7 -2404.8 -2406.9 +2.1 4.3 

20 3924.6 3908.7 +15.9 -2357.1 -2351.0 -6.1 17.0 

21 3868.0 3345.7 +22.3 -2309.1 -2295.4 -13.7 26.2 

3-8 



These sign sequences would ordinarily indicate that the next higher order 

polynomial, a quadratic, should do well in reducing the residual errors. This is not 

substantiated; however, as Table 4b demonstrates. The deviations in this table have four 

sequences of the same sign and suggest that even a cubic polynomial will not necessarily 

produce an excellent fit to the data—this was not explored further. 

An alternative to using higher order polynomials is the reduction in sample 

size. This alternative was explored for the sample with n=ll. The results are shown 

below: 

Quadratic 

Sample Points ^xe    °ve xe       ye 

814-824 

819-829 

824-834 

829-839 

The three basic causes for residuals are: 

(a) maneuver of object tracked (this is represented by the polynomial), 

(b) noise in measurements, (this is represented by   <r    of which S   is 

an estimate), and 

(c) outliers (these will be discussed later in this report). 

It is assumed that there are no outliers in Sample I. Subsample 2 (points 819 

to 829) appears to be fitted quite well by a straight line and the quadratic was applied to 

give an estimate of the size of & . The first subsamples (points 814 to 824) are fitted 

reasonably well by a straight line so the quadratic was not tried. The last two subsamples 

have substantially larger S 's. This could be caused by either torpedo maneuvers or a 

larger noise component (larger    <r  )—this was not explored. 

Linear 
S 

xe S 
ve 

3.3 2.0 

2.9 1.9 

16.4 9.5 

13.9 11.1 
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C. Data Sample II 

The second sample selected for study was the set with times 867 to 387. 

These 21 points appear to present a curved path which might possibly be fitted by a 

quadratic. First, consider the successive differences in Table 5. Some difficulty similar 

to an outlier is indicated in the vicinity of t-=6 (t; = 872). Examination of the first 

successive differences shows a drop in velocity between tc and tg and only partial 

recovery between tg and t». One possible explanation would be an additional data point 

between t5 and tg. The actual explanation is the inadvertent introduction of a 

measurement from a different array taken at time tg and entered as the meaurement at 

tg. Measurements at t,, and subsequent times, should be shifted to respective preceding 

times. 

Instead of fitting all of Sample II, eleven points (872-882) were selected 

somewhat arbitrarily for fitting by least squares—these are plotted in Figure 4. The 

second differences all have the same sign and the third differences are small and have 

apparently random sign. The least squares straight line fit is presented in Table 6a and 

sketched in Figure 4.   (Note the shift in the time scale).   This was introduced to reduce 

the magnitudes of the numbers calculated in determining the fitted line and S . In dealing 
-       1 1 with the quadratic, the means x = JJ   2   Xj and y = -r*    2 V: were also subtracted from 

each observation x. and y., respectively, for the same reason.    Table 6b presents the 

quadratic regression.   The reduction in the S 's is dramatic as would be expected from 

Figure 4.   All of the ej's are less than 5 and hence within the residual noise that could be 

expected with a  a-   of 2 or 3.   The signs of the exj's; however, show some indications of 

lack of randomness.   For this reason, a third-degree polynomial was tried for the x^'s only. 

This produced the value S     = 0.946 with the maximum magnitude of any e • being 1.2. 
AC XI 

The cubic fits the data very well indeed. 

D. Data Sample HI 

The third sample selected for study involved an S-shaped maneuver as 

indicated by the 21 points (848-868) shown in Figure 5. The x and y coordinates of these 

points are presented in Figure 6 where it is evident that first and second order polynomials 

will not provide acceptable fits to the data. A third-order polynomial appears possible for 

the y.'s and a fourth order for the x.'s. A subset of 11 points (851-861 or points 4-14 in 

Figure 6 and Table 7) will be used for illustration. 
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Table 5.    Successive Differences - Sample n 

*I 
Xi \ A2 ^3 *i *l *2 A3 

1 2012.0 
+18.0 

-1255.5 
+94.2 

2 2030.0 
+26.1 

+8.1 
+0.7 

-1161.3 
+91.1 

-3.1 
+0.1 

3 2056.1 
+34.9 

+8.8 
-0.4 

-1070.2 
+88.1 

-3.0 
+1.9 

4 2091.0 
+43.2 

+8.3 
-43.4 

-982.1 
+87.0 

-1.1 
-106.5 

5 2134.2 
+8.1 

-35.1 
+70.9 

-895.1 
-20.6 

-107.6 
+227.9 

5 2142.3 
+40.9 

+32.8 
-15.1 

-915.7 
+99.7 

+120.3 
-142.3 

7 2183.2 
+58.6 

+17.7 
-12.6 

-816.0 
+77.7 

-22.0 
+12.8 

3 2241.8 
+63.7 

+5.1 
+2.8 

-738.3 
+68.5 

-9.2 
+5.3 

9 2305.5 
+71.6 

+7.9 
-5.0 

-669.8 
*65.6 

-2.9 
-7.1 

10 2377.1 
+74.5 

+2.9 
+4.8 

-604.2 
+55.6 

-10.0 
+5.2 

11 2451.6 
+82.2 

+7.7 
-4.1 

-548.6 
^50.8 

-4.8 
-2.8 

12 2533.8 
+85.8 

+3.6 
-1.3 

-497.8 
+43.2 

-7.6 
-0.8 

13 2619.6 
+88.1 

+2.3 
+1.5 

-454.6 
+34.8 

-8.4 
^0.4 

14 2707.7 
+91.9 

+3.8 
-3.7 

-419.8 
*26.8 

-8.0 
-0.4 

15 2799.6 
+92.0 

+0.1 
+3.5 

-393.0 
+18.4 

-8.4 
-2.2 

16 2891.6 
+95.7 

+3.7 
-3.5 

-374.6 
+7.8 

-10.6 
+3.5 

17 2987.3 
+95.9 

+0.2 
-1.8 

-366.8 
+0.7 

-7.1 
-4.0 

18 3083.2 
+94.3 

-1.6 
+5.9 

-386.1 
-10.4 

-11.1 
-1.7 

19 3177.5 
+98.7 

+4.3 
-9.2 

-376.5 
-23.2 

-12.8 
+9.5 

20 3276.2 
+93.8 

-4.9 -399.7 
-26.5 

-3.3 

21 3370.0 -426.2 
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Table 6a.    Linear Regression - 11 Points (872-882) 

t. 
1 

Xi ^(t.) exi 1l Tcv eyi 
di 

-5 2183.2 2148.5 +34.7 -816.0 -762.0 -54.0 64.2 

-4 2241.8 2229.7 +12.1 -738.3 -716.5 -21.8 24.9 

-3 2305.5 2310.9 -5.4 -669.8 -671.1 +1.3 5.6 

-2 2377.1 2392.1 -15.0 -604.2 -625.7 +21.5 26.2 

-1 2451.6 2473.2 -21.6 -548.6 -586.2 +31.6 38.3 

0 2533.8 2554.4 -20.6 -497.8 -534.8 +37.0 42.4 

1 2619.6 2635.6 -16.0 -454.6 -489.4 +34.8 38.3 

2 2707.7 2716.8 -9.1 -419.8 -443.9 +24.1 25.7 

3 2799.6 2798.0 +1.6 -393.0 -398.5 +5.5 5.7 

4 2891.6 2879.2 +12.4 -374.6 -353.1 -21.5 24.8 

5 2987.3 2960.4 +26.9 -366.1 -307.6 -58.5 64.4 

'x (0=2554.4+81.19t ^(0=-5 34.8+45.43t 

S     = xe 20.33 sye = 36.41 
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Table 6b.    Quadratic Regression - 11 Points (872-882) 

h Xi ^t.) exi *l 9(tj) eyi 
di 

-5 2183.2 2179.3 +3.9 -816.0 -817.8 +1.8 4.3 

-4 2241.8 2241.8 -0.2 -738.3 -738.9 +0.6 0.6 

-3 2305.5 2308.8 -3.3 -669.8 -667.4 -2.4 4.1 

-2 2377.1 2379.7 -2.6 -604.2 -603.3 -0.9 2.8 

-1 2451.6 2454.7 -3.1 -548,6 -546.7 -1.9 3.6 

0 2533.8 2533.9 -0.1 -497.8 -497.6 -0.2 0.2 

1 2619.6 2617.1 +2.5 -454.6 -455.9 +1.3 2.8 

2 2707.7 2704.5 +3.2 -419.8 -421.6 +1.8 3.7 

3 2799.6 2796.0 +3.6 -393.0 -394.8 +1.8 4.0 

4 2891.6 2891.6 0.0 -374.6 -375.5 -0.8 0.8 

5 2987.3 2991.3 -4.0 -366.1 -363.5 -2.6 4.8 

/^/^   ,„„ „. .. .„. „ —..2 
"x(t) =2533.9+81.19t+2.057t" v(t) =-497.6+45.43t-3.724t 

Sxe=3.32 Sye=1.91 
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The results of fitting third-degree polynomials to these 11 points is 

presented in Table 8 and the fourth-degree polynomial in Table 9. The cubic equation fits 

the y component quite well, but even the quartic equation leaves something to be desired 

(smaller S ) for the x component. Higher order polynomials were not tried. The estimates 

S for <r obtained by fitting polynomials to the subsample of 11 points are presented 

below: 

Order of 

Polynomial X Y 

1 66.8 94.5 

2 37.3 42.6 

3 34.0 3.5 

4 9.3 

Improvement in fitting the y component by increasing the order of the 

polynomial is quite dramatic but the improvement is considerably slower for the x 

component. The third-order polynomial could be considered acceptable for y but a fifth- 

order polynomial should be tried for x. The order of polynomial used does not have to be 

the same for both components. 

E. Discussion 

Only one in-water run was examined and, for it, only selected sections of the 

torpedo path were treated in any detail. Nevertheless some conclusions can be made 

about application of the Sequential Differences and Least Squares Regression techniques 

to 3-D data. 

(1)   Sequential differences: 

(a) These differences provide some capability for locating isolated 

outlier points which differ substantially from the path of the object being tracked. This 

was illustrated in Sample II. The model shown in Tables 1 and 2 needs extension to higher 

order polynomial paths and multiple outliers. Also, the critical magnitudes for sequential 

differences (refer to Table 1) must be increased to allow for accelerations since the use of 

sequential differences will precede fitting a polynomial and hence the order of the fitted 

polynomial will not be known at the time. Thus sequential differences should be used only 

for a first screening for gross outliers. 
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Table 7.    Successive Differences - Sample III 

*l Xi *1 ^2 ^3 *i Al A2 A3 

1 2949.3 
-40.5 

-1364.0 
+74.4 

2 2889.3 
-56.8 

-10.8 
+10.1 

-1289.6 
+74.0 

-0.4 
-17.9 

3 2828.5 
-51.5 

-0.7 
-22.3 

-1215.6 
+56.5 

-17.5 
+49.8 

4 2777.0 
-74.5 

-23.0 
+12.8 

-1159.1 
+88.8 

+32.3 
-83.6 

5 2702.5 
-84.7 

-10.2 
+1.4 

-1070.3 
+37.5 

-51.3 
+14.8 

6 2617.8 
-93.5 

-8.8 
+18.0 

-1032.8 
+1.0 

-36.5 
-8.5 

7 2524.3 
-84.3 

+9.2 
+20.8 

-1031.8 
-44.0 

-45.0 
+16.6 

3 2440.0 
-54.3 

+30.0 
+8.4 

-1075.8 
-72.4 

-28.4 
+9.1 

9 2385.7 
-15.9 

+38.4 
+3.2 

-1148.2 
-91.7 

-19.3 
+32.1 

10 2369.8 
+25.7 

+41.6 
-56.7 

-1239.9 
-78.9 

+12.8 
-25.3 

11 2395.5 
+ 10.6 

-15.1 
-28.5 

-1328.8 
-91.4 

-12.5 
+15.4 

12 2406.1 
-33.0 

-43.6 
+8.8 

-1420.2 
-88.5 

+2.9 
+21.2 

13 2373.1 
-67.8 

-34.8 
+13.4 

-1508.7 
-64.4 

+24.1 
+15.3 

14 2305.3 
-89.2 

-21.4 
+19.2 

-1573.1 
-25.0 

+39.4 
+2.4 

15 2216.1 
-91.4 

-2.2 
+17.9 

-1598.1 
+16.3 

+41.8 
-4.9 

16 2124.7 
-75.7 

+15.7 
+17.8 

-1581.3 
+53.7 

+36.9 
-7.0 

17 2049.0 
-42.2 

+33.5 
+4.2 

-1527.6 
+83.6 

+29.9 
-20.3 

18 2006.8 
-4.5 

+37.7 
-23.5 

-1440.0 
+93.2 

+9.6 
-7.5 

19 2002.3 
+9.7 

+14.2 
-5.9 

-1350.8 
+95.3 

+2.1 
-3.2 

20 2012.0 
+18.0 

+8.3 -1255.5 
+94.2 

-1.1 

21 2030.0 -1161.3 
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Table 8.    Cubic Regression - Sample III (11 points) 

H xi ^(tj) exi y* ?(tj) eyi 
di 

-5 2777.0 2804.8 -27.8 -1059.1 -1159.0 -0.1 27.8 

-4 2702.5 2680.2 +22.3 -1070.3 -1066.7 -3.6 22.6 

-3 2617.8 2383.9 +33.9 -1032.8 -1028.6 -4.2 34.2 

-2 2524.3 2511.8 +12.5 -1031.8 -1035.5 +3.7 13.0 

-1 2440.0 2459.6 -19.6 -1075.8 -1078.3 +2.5 19.8 

0 2385.7 2423.3 -37.6 -1148.2 -1147.7 -0.5 37.6 

1 2369.8 2398.6 -28.8 -1239.9 -1234.7 -5.2 29.3 

2 2395.5 2381.3 +14.2 -1328.8 -1330.0 +1.2 14.3 

3 2406.1 2637.6 +38.5 -1420.2 -1424.5 +4.3 38.7 

4 2373.1 2252.8 +20.3 -1508.7 -1509.1 +0.4 20.3 

5 2305.3 2333.1 -27.8 -1573.1 -1574.5 +1.4 27.8 

1c(t)=2423.3-29.812t+5.827t2-.649308t3 

/ytt)=-1147.7-79.73t-8.761t2+l•5271t3 

Sxe=34'0 V3-5 
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Table 9.    Quartic Regression - Sample IE (11 points) 

li Xi ^t.) exi 

-5 2777.0 2774.0 +3.0 

-4 2702.5 2711.0 -8.5 

-3 2617.8 2614.8 +3.0 

-2 2524.3 2516.9 +7.4 

-1 2440.0 2439.1 +0.9 

0 2385.7 2392.5 -6.8 

1 2369.8 2378.1 -8.3 

2 2395.5 2386.6 +8.9 

3 2406.1 2398.4 +7.7 

4 2373.2 2383.7 -10.6 

5 2305.3 2302.3 +3.0 

x(t)=2392.4-29.812t+16.533t2-.6943t3-.428234t4 /\ 

Sxe=9.3 
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(b) Sequential differences also provide some indication of the order of 

polynomial that will be required. One indicator is the number of sign changes that occur 

on the successive differences of a particular order. If there are few sign changes, then a 

non-random effect is indicated and a higher order polynomial will be indicated. Thus, for 

example, in Sample II the 11-point data subset shows a long sequence of +'s for the A ?-'s, 

but no such sequence (indicating randomness) for the A o:'s. Hence, a third order 

polynomial can be expected to provide some improvement over a second-order 

polynomial. This type of information may be difficult to incorporate into a data 

smoothing algorithm, but even some simple procedure can be of help in reducing the 

computational load. 

(2) Sample Size: 

(a) Although it is possible that a sample of 21 points could be fitted 

with acceptably small S in some instances (the quadratic was not tried on Sample II), it 

would appear that smaller samples (e.g., n=ll) will allow fitting the data with a 

reasonably low-order polynomial. The size n=ll is not sacrosanct but will leave some 

room for elimination of outliers and so seems to be a reasonable size. 

(3) Least squares smoothing: 

(a) By its nature, the estimate S , for the standard deviation a of 

the measurement noise, is monotone decreasing as the order of the polynomial increases. 

(An n-1 order polynomial should be able to fit n points exactly so that S would be zero.) 

The appropriate order polynomial is one which reduces S to the level of the noise in the 

measurements. This may vary with the path and the array making the measurements. For 

the portions of the path examined, it is suspected that <r is less than <j since S is 

generally smaller than S for a given order polynomial. The decision to use a higher- 

order polynomial to fit a set of data depends upon the value of S obtained for a given- 

order polynomial. If S is small (3 or 4Vthen higher-order polynomials cannot be expected 

to give much improvement. The extent to which S can be reduced will depend upon the 

component as well as the polynomial degree. 
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(4) Outliers: 

(a) In addition to rough screening for outliers by sequential 

differences, there is additional screening that can be performed using residual errors after 

a polynomial has been fitted to the data. Outliers contributed substantially to SQ and the 

two basic techniques of reducing S are elimination of points with large residuals, or 

increasing the order of the polynomial. 

(b) Elimination of outliers using residuals after smoothing can be 

accomplished in two ways: 

(1) by confidence intervals—a residual greater in magnitude than 

some specified multiple (3 or larger) of S   can be considered to be a outliers, and 

(2) by variance reduction—the ratio of S rs before and after 

removal of a point, or points, with substantial residuals can be used as a basis for the 

decision on whether to remove the points. For example, if S (after)/S (before) ^ r, 

then the points should be removed (Grubbs' criteria). The value of r is in the range 0.0 to 

1.0 and could be changed depending upon the magnitude of S . 

(5) Sampling rate: 

(a) The smoothing of 3-D data can be performed to provide either a 

parametric representation of path segments, or specific information such as position and 

velocity information, only at certain points on the path. These will be callled "Darametric 

estimation" and "point estimation," respectively. 

(b) To illustrate parametric estimation, consider data collected at 

200 sequential observation times (e.g., 800 to 1,000 for the 3-D data used in this section). 

Samples of 11 points will be used. Sample S, will consist of points 1 through 11, sample S, 

of points 10 through 20 and, in general, sample S- of points from 10(j-l) to lOj. There will 

then be 20 samples on the path. Each sample of 11 points is to be fitted by a polynomial 

of appropriate degree and the parameters of the polynomial together with the value of S 

recorded for the path segment represented by that sample. Note that there will be two 

points of overlap between S1 and S„ and one point of overlap thereafter. 
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(c) For point estimation, sequence of points must be provided. For 

data consisting of 200 points it may be considered that occasional monitoring is sufficient 

for points 0 to 50 and 100 to 150, but that behavior of the path from points 50 to 100 

should be monitored more often and behavior from points 150 to 200 should be followed 

closely. Then the following sequence of points could be considered reasonable: 

Points Midpoint 

j in S, h 

1 5-15 10 

2 25-35 30 

3 45-55 50 

4 55-65 60 

5 65-75 70 

6 75-85 80 

7 85-95 90 

3 95-105 100 

9 115-125 120 

10 135-145 140 

11 145-155 150 

12 150-160 155 

13 155-165 160 

14 160-170 165 

15 165-175 170 

16 170-180 175 

17 175-185 180 

18 180-190 185 

19 185-195 190 

20 190-200 195 
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(d) At each midpoint time t., the position coordinate estimates, the 

velocity in these components, the resultant velocity, and S  • can be recorded together 
w J 

with additional information, such as acceleration components, if desired. Note that, the 

sequence of 20 points suggested above has substantial overlap of samples in some cases 

and data gaps between samples in other cases. This was introduced intentionally since 

least squares smoothing produces better estimates (smaller confidence intervals) at the 

midpoint of the sample when the fitted curve is a straight line (refer to Appendix B). 

(e) Parametric estimation could also be modified to delete some 

samples (e.g., alternate samples from t=100 to ^=150). It should require greater 

modification to achieve the quality of point estimation procedure at other than 

parametric sample midpoints when a straight line (first-order polynomial) is used. When 

higher order polynomials are required, the preference for the best estimate at midpoint of 

the sample is lost (refer to Appendix B). Making both techniques available provides some 

flexibility in data smoothing to accomodate potential customers. 
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IV. A DATA SMOOTHING ALGORITHM 

The following procedure is suggested for smoothing 3-D data: 

Step 1: Select appropriate sample size.   (11 is suggested as being small enough to 

provide some capability of fitting path segments of maneuvering torpedoes without 

requiring high-order polynomials. Some leeway for dropping outliers is also provided.) 

Step 2: Select parameter of point estimation. 

Step 3: Select sampling rate.   (A standard rate such as described in Section III E4 

should be provided as a default rate for parameter estimation and the midpoints of these 

samples as a default rate for point estimation.) 

Step 4: Adjust   data   for   missing   data   points.      (The   principle   applied  here   is 

minimization of the effect of the numbers on sequential differences. For a single missing 

datum, the average of the values at two adjacent times will minimize the second 

differences. In any case, data supplied in this step must be removed before least squares 

smoothing is applied.) 

Step 5: Calculate first, second, and third order sequential differences. 

st Step 6: Determine approximate polynomial order k.    (The (k+1)    order sequential 

differences should contain noise only, and thus, have random signs. Sequences of 4, or 

more, differences with the same sign suggest the presence of a non-random component as 

does the occurrence of 4, or fewer, changes of sign. The presence of a non-random 

component is going to be awkward to identify. If the second differences are random, then 

k=l. If the second-order differences are non-random, but the third-order differences are 

random, then k=2. If the third-order differences are non-random then fourth-order 

differences should be calculated and examined for randomness. (This examination of 

sequential differences in increasing order should probably not be carried beyond the fifth- 

order.) 
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Step 7: Screen   successive   differences   for   gross   outliers.      (This   must   follow 

determination of approximate degree of polynomial since it should be based on comparison 

of magnitude of deviation to noise only as indicated in Tables 1 and 2. The critical values 

suggested in those tables should be increased substantially. Some limit, possibly between 

50 and 100, should be selected keeping in mind that this is a first screening for gross 

outliers and a second screening will be made. Any outliers found in this step; however, 

will reduce computations in later steps. Remove any outliers found and the observations 

for the other space components at the same observation time.) 

Step 8: Check for polynomial degree compatibility.    (If the number of outliers 

removed (r) satisfies the inequality r + k ^ n-1, where k is the degree of polynomial found 

in Step 6 and n is the sample size after data points supplied in Step 4 are removed, then 

fitting a k order polynomial will be inappropriate. For example, if r = 4 points are 

removed from a sample in which one data point has been created in Step 4, then a 

polynomial of degree 5 can be fitted to the data without any residual errors since there 

are 6 linear relationships of the 6 coefficients.) 

Step 9: Fit a polynomial of degree k to the data.    (The least squares procedure 

outlined in Appendix A is applicable.  At this step only S     need be determined and not the 
ke 

coefficients.) 

Step 10: Seek acceptable S .    (If S.     is unacceptably large, repeat Step 9 with k 

replaced by k + 1.  Repeat  th 

degree 5 is fitted to the data.) 

replaced by k + 1.  Repeat  this step until either S    is acceptable or a polynomial of 

Step 11: Complete least squares polynomial fit.   (The coefficients for the polynomial 

of degree found in Step 10 are now needed, and the residual errors.) 

Step 12: Second screening for outliers.  (One of the procedures discussed in Section III 

E3 should be applied to locate any outliers not found in Step 7.  Remove the outliers). 

Step 13: Repeat Steps 9,  10,  11,  and  12 until no more outliers are found.    (The 

polynomial obtained will be used for smoothing sample data. Note that the alternative 

procedure of searching residuals for each polynomial degree to locate outliers may result 

in removing points which are not actually outliers but legitimate observations for a higher 
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degree polynomial. On the other hand, the proposed method could use a higher order 

polynomial to fit outliers when a lower order polynomial should actually be used. There is 

a choice of the type of misfit that is acceptable.) 

Step 14; Record  smoothed   path.     (For  parametric  form,  if  specified in  Step 2, 

recorded data includes coefficients of fitted polynomial, S - and n- for each sample S- 

specified in Step 3.    For point estimation form, if specified in Step 2, recorded data 

includes:     time  t.  estimated coordinates s. = x(t.),     y. = y(t.),  and 2.- = z(t.), velocity 
J J        J J        J 3 J 

components, S  ., and n for each point specified in Step 3.   Additional path information eJ J 
may also be specified; e.g., acceleration components.) 
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V. CONCLUSIONS AND RECOMMENDATIONS 

The procedure suggested in Section IV provides a reasonable approach for 

obtaining the information desired in parts (1), (2), and (3) of Section I B. No attempt has 

been made to provide the information in part (4). 

In instrumenting this procedure, several parameters must be provided: 

A. Sample Size (Step 1) 

A smaller sample size of n=7 has been suggested. This would permit fitting 

path segments contained maneuvers with lower order polynomials, but is subject to 

greater degredation by missing data points and removal of outliers. Experience on 

relative occurrence of such events in actual field data will be useful in selecting 

appropriate sample size. 

B. Choice of Parameter or Point Estimation (Step 2) and Sampling Rate (Step 3) 

The desires of the customers who will use the smoothed data is of primary 

concern here. 

C. Specifying Approximate Polynomial Order (Step 6) 

It will be difficult to specify a simple rule for determining that the k     order 
st sequential differences contain non-random components but the (k+1)    order differences 

involve only random components. The Theory of Runs can be of some help here although a 

simpler rule is desirable—this needs further study. 

D. Rough Screening For Outliers (Step 7) 

A reasonable critical level for identifying outliers by sequential differences 

must be established. The occurrence of an isolated outier was considered in Section II B. 

Other potential producers of large sequential differences such as paired outliers, violent 

changes in velocity, et cetera, should be examined for resultant effects. Identification of 

signatures for such effects will be useful in using sequential differences to identify 

outliers. 
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E. Polynomial Degree Limitations (Step 10). 

The limitation of polynomial degree to 5, or less, appears reasonable for 

samples of size 11. The possibility of decreasing this limit to 4 or increasing it to 6 or 

higher should be considered. This may require more experience with in-water run data. 

For smaller sample sizes, such as n=7, reduction of this limit to lower polynomial degree 

should be considered. 

F. Computing Smoothed Path (Step 11) 

The pivotal condensation method outlined in Appendix A can be simplified 

even further in certain cases which may occur frequently enough to take advantage of 

their commonality in the computer program. In particular, when the sample consists of 

n=ll data points at adjacent times, the shift of the time origin to the midpoint of the 

sample produces the following effects: 

(1) coefficients of the polynomial parameters are the same in the normal 

equations for all samples, 

(2) only the last column in the pivotal condensation format changes with 

sample, and 

(3) the other columns in the pivotal condensation format require only 

addition of a row and a column in each box when the next higher degree polynomial is 

considered. 

The above commonality is also clearly evident in the vector representation presented in 

Appendix A. The extent to which this commonality can be exploited depends primarily 

upon the rarity of missing data points and outliers. Indeed, depending upon requirements 

of the ultimate users, data smoothing could conceivably be restricted to only such 

samples. 

In summary, the data smoothing algorithm presented in Section IV appears 

reasonable, but there are several elements that must be specified before it can be 

implemented. Some of these can be improved by further research, others depend upon the 

quality of the data which can only be determined by experience with actual 3-D data. 

Finally, some of them can only be determined in consultation with the ultimate users of 
the smoothed data. 
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APPENDIX        A 

LEAST        SQUARES        DATA        SMOOTHING 

A-l LINEAR  LEAST   SQUARES  WITH  ONE   PREDICTOR 

Sample; 

(xi   Y0   i = 1'2" -"n 

Assumptions: 

Al —   Actual relationship between X and Y 
is linear, i.e., 

y(x) = a+Sx 

A2 —   Abscissas are without errors 

xi=*i 

A3 —   Ordinates  contain  measurement  or 
observations/errors 

y. =y . + 6. 

€. = obs 

yi=y(xi) 

€. = observational error 

Problems: 

Fit a straight line to the data 

Engineer's Solution: 

Let     y(x)=a+bx 

ei=yi-y(xi) 

D=? ei' = 5(yi-a~bxi)
z 

The coefficients a and b are selected to 
minimize D (the sum of squares of the deviations of the 
observed y^'s from the fitted line).  Setting 

9a      3b 
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gives the two equations 

na+(Zxi)b=Eyi 

(2xi)a+(2xi )b=£xiYi 

Solving these equations yields the desired 
estimates a and b for the parameters a  and 8, i.e., 

n (2x y.) - (sx ) (2Y: ) 
Q  n 11 1 i   • •   • I       I 

n(Zxj )-(Zx|) 

a = |aj ^V 
n 

Computational Format: 

The following format uses pivotal 
condensation to produce a and b. It also yields D and hence 
the sample variance 

S2=-^- i  e2 b
e n-2 I ei 

without requiring calculation of the individual e.'s. 

n (Zxi) (2yi) Axx=[n(Zxi
2)-(Zxi)

2]/n 

(Zx-2) (ZxiYi)       Axy=[n(Exiyi)-(2xi) (2yi)]/n 

(ZYi
2) Ayy=[n(Zyi

2)-(Zyi)
2]/n 

2 
Axx Axy D= (A*x Axy"Ayy "Axx 

A^ S**D/(n-2) 

D _      b=Axy/Axx 

a b S* a-[(Zyl)-b(Zxi)]/n 

Statistician's Solution: 

Statisticians augment the Engineer's Solution 
by adding the following assumptions: 

A4 — The observational errors (the €.'s) 
are realizations of independent random variables, E.'s, with 
zero means and common variance, i.e., 

uE> •g(Ei)«0 

2 
= £ (Ei-^5.) 2]= a2 for all i. 
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A5 — The observational errors are 
normally distributed random variables. This will be denoted 
by 

Ei ~ N(0,a2) 

Now let y. denote the realization of the 
random variable Y   Then 1 

Yi=y(Xi)+E. 

and 

Further, the random variable Y. can be expressed in the form 

Yi=A+BXi 

where 
n2x.Y. - (Sx.) (SY. )  « 

B= l—I 1 L~= VY and 

n(Zx* J-dxj)1    Axx 

A= (SY.J-Bda^ ) 

Note that A and B are linear functions of the Y-' s and hence of 
the E.'s.  It can now be shown that 

JU-ft(A)-a 
A and 

UB=!(B)=8 

so that a and b are unbiased estimators for a and 8'. The 
evaluation of the variances of Y (x) , A and B is simplified if 
the x^'s are shifted so that their mean is zero.  Then, since 

Exj=0 
Axx=^xi 
Axy= 2xiyi 
b=(ZxiYi) 

(rxj) 

a= gri • Y 
n 
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This shift in the x-axis will be assumed in the development 
which follows. 

It can now be demonstrated that 

21  2, a2 = a2/n, 

Cov (A,B)=i[(A-a) (B-/?)]=0, 

a2 n + x 2 a2,   and y(x)   In   (2x ^)J 

&<SE )= < 

The last relationship is very important since s| is an 
unbiased estimator ofa2and is our only source of information 
on this parameter. 

The assumption of normality (A5) together with 
linearity of the other random variables in the E-'s insures 
that they are also normally distributed, i.e., 

Y - N(y,a2) , 

A ~ N(a,a2/n), 

B - N(£,a2/£xi'z) ,      and 

Y(x) - N[Y(X), (i +I2Li__)a
2] 

The random variable (n-2) SE/J
2
 has a Chi-Square distribution 

with n-2 degrees of freedom and the random variables. 

Ta  = /n(A-a) 

Se 

T3  =B_2S  and 

a. 

have a Student-T distribution with n-2 degrees of freedom. 

These distributions can then be used to 
establish confidence intervals for a , 8, and y (x) at any x. 
Thus,for example, with k from Student-T tables such that 

P(-k<T<+k) =.95 
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we have the following 95% confidence intervals 

(a-kSe, a+kS) 
n • n" 

for a, 

for 8, and 

(b-kSe /2X}
2, b+kSe /Sx.

2) 

(Y(x)-kSe 4+J^T, Y(x)+kSe 4+-f~r) EX| 

for y (x) at any x. It should be stressed that the confidence 
interval for y" (x) given above involves measurements about the 
mean of x (x=0) . The general form for this confidence 
interval is 

It should be noted that the confidence interval for y (x) is 
shortest for x=x and increases as x deviates from this value. 

A sketch of the situation can help clarify the 
mathematical elements involved. 
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y |x| = ot+Sx = actual linear relationship 

y ixl = a+bx = fitted 

6. = observational error 

e. = fitting error 

e(x) = prediction error at any x 

*• x 

x, 
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A-2.      LINEAR LEAST SQUARES WITH TWO PREDICTORS 

Sample: 

x . ,  x . , y   )     i-   ,2,...,n 
11 21 1 

Assumptions: 

Al  -- y(x)=a0+aixi+a2x2      x= (x^Xj) 

A2  — XXJ-S^   and  xzi =x2i 

A3 -   yi=y(xl)+€i      xi= (^,^1 

Engineers' Solution; 

Let     y(x)=a +a x +a x 
J       0   11   2  2 

ei=yi-y(xi) 

D=Zei
2 = E(y  -a0-

aiXii"a2X2i)2 

Minimizing D 

1D_=0;   3P_=0/   3D_=0 

3a 3a 3a 
0 1 2 

produces the normal equations 

nao+(Zxii)a1 + (Zxzi)a2 = (ZYi) (1) 

(Sxa)at + (2xii
2)a1 + (Sx^y^)., = (2xliyi)    (2) 

(zx
2i>a

0 
+ (2xu 2i>

ai + (2x2i2>a2 • (Sx2iyi)      (3) 

which  can be solved for a   ,   a ,  and a2   in terms of sample data. 

Solving   (1)   for  a    gives 

a 0= [ ( Zy.) - ( Zx d ) a:- ( Zx zi ) a 2] /n (i) 

Substituting   (1  )   in   (2)   and   (3)   gives 

Anai+  A
i2

a
2

=Aiy (2') 

Anai+A:2
afA

2y & 
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Solving (2') for a1 gives 

and substituting in (3* ) gives 

«.-3p- (3") 

where the coefficients will be defined in the computational 
format which follows. Equations (3" ), (2" ) and (l1 ) can be 
used to determine the values of a0, a1# and a2 

COMPUTATIONAL FORMAT 

n EXli     2x2i Sy. Ajk=[n(Zxjixki)-(2xj t) (Zxki)]/n 

2x2
li  2Xllx2i     Ex22Yi Ajy=[n(Exjiyi)-(Exji)    (Zy^l/n 

Zx2i
2 2x2iy. Ayy=[n(Zyi

2)-(Syi)
2]/n 

ZYi
2 B22=[A11A22-A12

2]/A11 

V        A12 
Axy B

2y=tAiiA
2y-

Ai2
Aiyl/An 

A22 A2y Byy=[AllAyy-Aiy
2]/A11 

A De=[B22B  -B2 
2]/B22 

"B ff 
22 2y 

**    yy       <y 

2^        1    «     a     2_, Byy Se
2= T+T 2   e^.D^Cn-5) 

Df         a2
=B

2y/
B

22 
a
0 

ai a
2 

Se2 ai=fAiy-a2
A

125/Aii 
a0 = [(Syi)-a2{ Kzi)'^l(Zxli)]/n 

Staticians' Solution 

Assumptions A4 and A5 lead to the following 
random variables and their distriubtions 

E = observational error in y at  (x ,x_) 

- N(0,a2) 

y(xxx ) = y(x, X2)+E 

- N(y(Xlrx2) , a2) 

A
2
=B

2y/
B
22 

- N<a- A  A^-A ^   ^ 
11  2 2    12 
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A  =[A     -A A     ]/A 
1       iy    212       ii 

N  U, , 2 2 1 yr"7 =r.- 11      11 12 

Also 

A0 = [ lZyi)-klZxli~kzLxzi]/n 

-     N(o„oVn) 

Cov   (A0,Ax)=Cov   (Ao,Az)=0 

Cov   (A,,Az)' -A i-*_ 
A      A       -A * 

Then   for   a   predicted   value  Y(X1,XZ)    at   any   point   (x,rXj)   we 
have 

y       [n+\A11B2/;^ ^AWBZJ        4   *        VA7TK7J &— IXj* 

This together with 

Uy =  E(y) -y(Xj ,xz) 

and the fact that 

?(Xt ,X2) - N(y£,a*) 

can be used to establish confidence intervals for y(xi,xj 

CAUTION: In deriving these formulas it was 
assumed that xx = x2 =0. For data in which this shift has not 
been made, the formulae must be adjusted. 

Quadratic Model 

The quadratic mode 

y= c^+a^-hot^x* 

can be transformed into a linear model with two predictors 
by the transformation 

xx=x ,  xz=x* 
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A-3.      LINEAR LEAST SQUARES WITH THREE PREDICTORS 

Sample; 

(xii'x2i'x si,xi* i = 1'2'---'n 

Assumptions: 

Al —   y(Xi,x2,x3)=a0+alxl+a2x2
+ajX3 

A2 —   xi=*i  i"l»2f3 

A3 —   y^ = y (x4 ,xzx3)+ei 

Computational Format 

n     Exti       Exzi Ex3i SYi AQV= [n (Zx^x^) - (Ix^) (Ix^) ] /n 

Ex\i       2xiiX
2i     Sxiixa       xii^i u,v=l,2,3 

Sx2i
2 £x2ix3i     Exi^       Auy=[n(Sxu.yi)-(2xui)(ZYi)]/n 

2X3i2 2X3^    j_ 

Zy*• B     =(Ai,A     -A     A     )/A,, •*   1 uv   v   l l   uv      IU   IV"    " 

Aii ^i2 ^i3 ly 

i2 2 A23                A, C     =(B22B     -B     B     )/B22 2 3                           2y UV            22     UV         2U     2V           " 

A33 A3y 

Ayy De=(C3 3Cyy-C3y
2  )/C„ 

B22 B23 B2 

B33 B3y Se=De/tn-4)=  ^  Z   e. 

C« C3y A3=C,„/C 

'yy 

33 ^3y 
A3-^-3y/v- 

c 

De A2 = (B2y-a3B2y)/B22 

3g    3i 32 33 Sg 
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a  =(A     -a  A     -a  A     )/A 
1 iy        3      13 2      12 11 

•i-«yl-*iS«li-*1tati-aiS"ll)/n 

2(x  ,x  ,x  )=a +a  x +a  x +a  x 
12 3 0 11 2     2 3     3 

Statistics 

y(x   , x   ,x   )=A  +A  x  +A  x  -»A  x J 1 2 3 0112233 

=Prediction Equation 

It can be seen that the A. ' s, and hence 
$(x ,x ,x ) are normally distributed. Determining their means 
and1 variances is quite mathematically involved and will be 
delayed until the vector solution is considered. 

Cubic Polynomial 

y(x)=a  +a  x+ct  x2+a  x3 

* 0 12 3 

Transformation 

X,=X r    X = X2  / X = X3 

1 2 3 

y (x) =a +a x +a x +ot x 
J        0    112  2   3  3 
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A-4 LINEAR LEAST SQUARES WITH Jc PREDICTORS 

Sample Data; 

(xii,...xki,y.)    i=l,...,n 

Linear Model: 

Oil K    < 

Prediction: 

y=a  +a  x +. . .+a. x 
Oil *    * 

Computational Format 

n ix 
11 

11 

Ex2i   '••     zxki 

2^2i2 

Exki2 

LYi 

:xii    x2i—2xii   xki     Zxii yi 

Zx2ixki       Zx2iYi 

SxkiYi 

i i 1 2 'ik 

l2k 

'iy 

A. 

kk ^Y 

yy 

A2 .2 2 

A2  .3 3 

A2  . 2k 

A2  .31, 

A2 . k k 

l2 • 2 y 

A2 .3 y 

"2 - 1 1 
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3'33 3 • 3 k 3   » 

3 •   It  * 

AW b k *H • k   > 

" k  .  y    y 

A A 
o 1 k-i 

Se2     =  De/(n-k-l) 

A-13 



A-5 LINEAR LEAST SQUARES IN VECTOR FORM 

i * • • / X, ) .    LiS 

i=l, ,n.  Th 
matrix X where 

This will be presented for k predictors (*, 
et the sample data be (x .. , x^. /xkj_r^:) wi 
is data can be presented as a vector y and 

th 
a 

y • 

1 X  . . .X 
1 1    hi 

and x = / 1 x  . .. x 
1 2       k2 

1 X._. • .X _ in   un 

Now define vectors «, x and a as 

a • x • , and a = 

where x =1.  The linear model then takes the form 

y»y(x   ,x )»oTx» z ax 
*     J»0 : D 

where aT denotes the row vector which is the transpose of a, i.e., 

aT = (ct ,a ,. . . ,a. ) 
o  i      v 

The fitted equation are 

y=Y(x ,..,x )=a x* z   a.x 
1 i=0 : D 

where the a.'s are established to minimize 
] 

D=£e.2 

with 

=Yi-Y(xii,...,xki)=yi- 2 ajXji 

D=0 

In vector form, we have 

-•  •* •**•> 
e • y-xa 
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so that 

D=e e 

The normal equations (to minimize D) are 

XT x a=xT y 

with the solutions 

a-^lcj-1 xVy 

Expressing the coefficients in terms of random 
variables, we have 

K=(xT*xTl   x1? 

where 

with 

Yr=(Y , . . . ,YJ = (Y+E)T =YT +ET 
1     n 

E — (E , . . . , E ) 
1      n 

y =(y #•••r?n)=(xa) 

Y=y+E 

using 

<§(E)=0 

g(E E )=I*2 

where I is the nxn identity matrix, we have 

g(YY )=I<r2+yyT 

and hence the covariance matrix for Y is 

Cov (Y,Y') = g(YY')-??'=I*2 
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Then 

«*t 
E(A) = (x x)"1 x |(Y) 

•(x x)  x xa=a 

Thus a provides unbiased  estimates for the elements of a. 

For  the  variances  and  covariances  of  the 
coefficients we have 

and 

Cov (A,A ) = (x xf1 a2 

Finally, for Y at any x we have 

g(Y)=y 

o$=x  Cov [£.,%' ) x 

= x (x x) l xa^ 
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A P E N D IX B 

SAMPLE     LEAST   SQUARES    CALCULATION 

B-l. STRAIGHT LINE REGRESSION FOR SAMPLE II 

i             H                 X|              t. xj % exi 

1 872             2183.2        "5 -371.2 -405.9 +34.7 

2 873             2241.8       -4 -312.6 -324.7 +12.1 

3 874            2305.5       -3 -248.9 -243.5 - 5.4 

4 875             2377.1        -2 - 177.3 -162.3 -15.0 

5 876             2451.6       -1 -102.8 -81.2 -21.6 

6 877             2533.8          0 - 20.6 0.0 - 20.6 

7 878             2619.6           1 65.2 81.2 - 16.0 

8 879             2707.7           2 153.3 ,       162.4 - 9.1 

9 880             2799.6           3 245.2 243.6 +1.6 

10 881             2891.6          4 337.2 324.8 +12.4 

11 882             2987.3          5 432.9 406.0 +26.9 

SUM                                                         0 0.4 0.4 0.0 

28098.8 

-     1 
x= nZx. =2554.44 x.»x.-x 

n-11       Zt.=0 Exi=0.4 

Etf   =110 Ztixi=8,931.2 

B-l 

2x^ = 728,868.12 

A     =110 A     =8,931.2 

Axx=728,868.11 



Aee=3719.62 

2 
A  =0.04 A  =81.19 Se=Aefe4i-2^413.29     Se=20.33 

X(t)=a  + a  t=0.04+81.19t 
o 1 

B-2.     QUADRATIC REGRESSION FOR SAMPLE n 

V'i t  .=t.2 

2i    l 
Xi 

A 
Xi exi 

- 5 25 - 371.2 -375.1 + 3.9 

- 4 16 - 312.6 -312.4 - 0.2 

- 3 9 - 248.9 - 245.6 - 3.3 

-2 4 - 177.3 -174.7 - 2.6 

- 1 1 - 102.8 -99.7 - 3.1 

0 0 -   20.6 - 20.5 - 0.1 

1 1 65.2 + 62.7 +   2.5 

2 4 153.3 +150.1 *• 3.2 

3 9 245.2 +241.6 + 3.6 

4 16 337.2 +337.1 + 0.1 

5 25 432.9 +436.8 -  3.9 

SUM    0 110 0.4 0.3 0.1 

n=ll St   .=0 It   .=110 2X.=0.4 
ll 2 3- 1 

2t   • 2=110 St   .t   .=0 St   .X.=8,931.2 
11 11      21 ll     1 

Xt   . 2=1958 St   .X.=1769.2 
21 21     1 

2X^=728,868.12 
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A     =110 
1 1 

A     =0 
1 2 

A     =858 
2 2 

A     -8,931.2 

A2x=1765.2 

Axx=728,868.11 

A =858 
2,2 2 

A =1765.2 

A =3719.62 
2, XX 

Aee=87.999 

a=- 20.53 a   =81.19 a   =2.057 
2 

S%=Ape/8 = 11.00 e  "ee 

X(t)=-20.53+81.19t+2.057t: Se=3.32 
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B-3       CONFIDENCE INTERVALS FOR ESTIMATES 

In  Appendix  A,  it  was  shown  that  the 
confidence intervals for x(t) at any time t had the form 

(S(t)-C4(t)Se,£+Ci(t)Se)        3 =1,2 --, e -, 

where 

Cl«fc>-  kj4 + It 
t2 

v**- \n + 
— Ap  f2-2 (*        *lZ       )t-   (t -t)+(V-^ )(t     2 -t ) 
AllA2.22 1 \&]. 1^2 . 2 2/      L 2 2      \AllA2-22/ 2 2 

are the appropriate terms for the linear and quadratic 
regression curves, respectively. For a 95% confidence level 
and n-2 or n-3 degrees of freedom for the Student-T 
distribution we find ki =1.833 and k2=1.860. Introducing the 
numerical values determined in the preceding sections of this 
appendix, we find 

Ci(t>-1.833 l/lj + m 

2 

The relationships of C.(t) and C2(t) and the increments S C (t) 
and S, C ft) are shown'below using S, =20.33 and S  =3.32.e 2 e 2 I e 2 e 

t C] (t)     C?  (t)     Sie Ci (t)  S?RCg(t)  

Q 

+ 1 

+ 2 

+ 3 

+ 4 

+  5 

.553 .847 11.24 2.81 

.580 .820 11.79 2.72 

.654 .765 13.30 2.54 

.762 .776 15.49 2.58 

.891 .981 18.11 3.26 

1.034 1.417 21.02 4.70 
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-iwiHWfi - ^•immfmrnf*"'- rP»'W"' 

The confidence interval for x(t) is shortest at 
t=0 (the sample midpoint) for the linear regression. To find 
the value of t in the quadratic regression for which the 
confidence interval is shortest, consider 

,4- +  t* + (t2-io?2 

11   110    858 

now 

dz  =  1  + 2(t
2-10) 

dt7  110     858    U 

220 t2=2200-858=1342 

t2=6.10 

t=2.47 

C2(2.47)=0.7535 
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S.C(t) 

Slecl(t) 
Linear 

s2ec2(t) 
Quadratic 
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